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SENSITIVITIES FOR TAYLOR-TEST MODEL PARAMETERS

R. J. Henninger

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract.  The Taylor-Cylinder test has long been used to calibrate equation-of-state and material-
strength models.  The process consists of impacting a cylinder of material on a rigid anvil and adjusting
the model parameters to predict the resultant shape.  Here we discuss the use of Automatic Differentiation
(AD) of an Eulerian hydrodynamics model to provide sensitivities that are used as a gradient in the
parameter fitting process.  We apply AD in the forward and adjoint modes.  For comparison, the gradient
is also determined by finite differences. We find that adjoint methods provide the most efficient use of
computational resources when there are 9 or more parameters.

INTRODUCTION

  The purpose of this project has been to provide
sensitivities of results from an Eulerian
hydrodynamics computer code (hydrocode) (1) for
use in design-optimization and uncertainty analyses.
We began (2) by applying an equation-based
sensitivity technique used successfully in the early
eighties that was applied to reactor-safety thermal-
hydraulics problems (3,4), which is called
Differential Sensitivity Theory (DST) (5,6).  The
methodology is as follows: the system of partial
differential equations (the forward or physical
PDEs) is assembled, and differentiated with respect
to the model parameters of interest; the adjoint
equations are then determined using the inner-
product rules of Hilbert spaces (5); and finally, the
resulting adjoint PDEs are solved using
straightforward numerical operators.  The forward-
variable solutions when needed for the adjoint
solutions are provided by the original computer
code that solves the physical (or forward) problem.
In the present hydrocode application, acceptable
results were obtained for one-material, one-
dimensional problems. The DST results were then
improved by means of "compatible" finite
difference operators (6,7).  We have seen, however,
that DST techniques do not produce accurate values
for sensitivities to all of the parameters of interest
and for problems with discontinuities such as a
multi-material problem (8).  To obtain accurate

sensitivities for arbitrary numerical resolution a
more code-based approach was then tried. Results
for two-dimensional problems were obtained (9) by
applying Automatic DIfferentiation of FORtran
(ADIFOR, version 3.0) (10).

Here we present sensitivities for Taylor-cylinder
impact test calculations.  In what follows, we
describe AD methods in the context of their use for
a hydrocode.  We then describe the Taylor-test
calculations. This is followed by an examination of
the results, accuracy, and computer run times for the
ADIFOR-generated code.  Finally, we outline our
plans for future work.

AUTOMATIC DIFFERENTIATION
METHODS FOR  A  HYDROCODE

Use of a hydrocode for experiment fitting
purposes requires information about how some
scalar result (or response, R) will change when
some code parameter ( ) is changed.  This so-
called sensitivity, (  R

r 
), is the gradient (or

Jacobian) that determines the search direction for
obtaining an optimum response.  Typically, the
gradient is obtained by changing parameters one at
a time to form a finite-difference (FD) derivative.
This method requires N+1 computer runs to
determine sensitivities for N problem parameters.

Both code- and equation-based differential
sensitivity methods can be implemented in either
the forward or adjoint mode. By forward and



adjoint, we mean the direction through the solution
and in time and space in which the derivative values
are obtained.  The forward mode is more efficient
for determining the sensitivity of many responses to
one or a few parameters, while the adjoint mode is
better suited for sensitivities of one or a few
responses with respect to many parameters.  Here
we apply ADIFOR in both the forward and adjoint
modes.

AD tools require several steps to get from the
original code to an executable code that produces
sensitivities.  A precompiler first analyzes the code
and modifies it to include code that calculates the
derivatives of interest.  In the forward mode the
logic is straightforward.  The required additional
storage is simply added to the original code and the
derivatives are calculated along with the forward
solution.  In the adjoint mode for a non-linear
hydrocode the forward calculation must first be
completed since the information from the forward
calculation is needed in the adjoint or reverse
calculation. Independent storage and/or
recalculation can provide this information.   The
second step in the adjoint process is thus to
determine and set up the required storage.  For a
large problem a technique called checkpointing is
required.  This technique consists of dumping the
solution at checkpoints as the forward solution is
generated.  The complete forward solution is stored
from the final checkpoint to the final time of the
forward calculation.  One then calculates the adjoint
solution backward from the final state to the last
checkpoint.  The forward solution is then calculated
and stored from the second-to-the-last to the last
checkpoint.  The adjoint solution is then generated
from the last to the second-to-last checkpoint.  This
process is repeated until the initial time of the
forward calculation is reached and the sensitivities
are complete.

TAYLOR-CYLINDER
IMPACT CALCULATIONS

In this subsection we obtain sensitivities for a
copper Taylor-cylinder impact test (11).  In the
experiment, a 0.762-cm diameter 2.54-cm long
copper cylinder at 146 or 190 m/s strikes a rigid
anvil. We use a Mie-Gruneisen equation of state
(EOS) (12) and the Steinberg-Cochran-Guinan
strength model (13) to represent the copper.  As
implemented in the code, the pressure p  and yield
strength Y  are given by
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Where  is the density, e  is the internal energy, 0

is the plastic strain, and is the pressure-hardening
coefficient. The remaining model parameters are
defined in Table 1.  We intend to use the
sensitivities to find the model parameters that best
match the final shape of the copper cylinder.  The
response is therefore chosen to be

R = C rcalc,k − rexp, k( )2
k
∑ . (3)

Where C  is a constant, rexp, k  is the k th experimental

final radius, and rcalc, k  is the kth calculated final

radius.  Each of the k radii is at the same axial
location. The sensitivities of this response to the
initial conditions and the EOS and strength
parameters along with their definitions and nominal
values are given in Table 1.  If one normalizes by
multiplying each sensitivity by its nominal
parameter value, the parameters can be ranked as to
their importance.  We see that the nominal EOS
density is the most important followed by the
cylinder initial velocity and the strain hardening
exponent.  The table also compares the AD
sensitivities to the FD sensitivities determined with
a fractional parameter perturbation size of 10-7. The
agreement is only fair for several of the parameters.
We compare the AD and FD results by looking at
the time-dependence of the sensitivities.  Two of the
important sensitivities are shown in Fig. 1.  The
agreement is quite good.  Examination of the c 0

sensitivity that did not agree well shows that it
agreed well to approximately 30 µs; then diverged
as is shown in Fig. 2.  As seen in the figure a
smaller perturbation fraction (10-8) agrees better at
late time.  Close examination of all of the FD
sensitivities shows that large fractions lose accuracy
and small fractions display truncation errors.  The
comparisons are similar for the 146 m/s case.  The
FD sensitivities for this problem are thus useful for
rough confirmation only.  The accuracy required
when using the sensitivities as a gradient for an
optimization process or uncertainty analysis is yet
to be determined.



TABLE 1.  Comparison of the Taylor-cylinder test sensitivities for a 190 m/s impact.

Parameter description and value
AD forward &

adjoint
sensitivity

AD value
normalized

Rank
FD sensitivity

(1.0E-7)

Initial density, t = 0( )  (8.93 g/ cm3) 0.0038838 3.47E-02 4 0.058777

Initial velocity,  uz t = 0( )  (0.0190 cm/µs) 3.7952 5.54E-02 2 4.2063

Initial internal energy, e t = 0( ) (0 Mbar-cm3/g) 0.78148 0.00 - 0.99517

Initial stress deviator, szz t = 0( )  (0 Mbar) -0.22942 0.00 - -0.029852

Shock velocity constant, s  (1.489) -4.6204e-05 6.88E-05 9 -4.4867e-05
Sound speed, c0  (0.3940 cm/µs) 0.022017 8.67E-03 7 -0.0062747
Nominal EOS density,  0  (8.93 g/ cm3) -0.0078693 7.03E-02 1 -0.062284
Gruneisen ratio, Γ  (2.002) -0.00013854 2.77E-04 8 -0.00013871
Linear artificial viscosity constant  (0.2) -7.3006e-05 1.46E-05 11 -0.00010793
Quadratic artificial viscosity constant  (2.0) -1.1642e-06 2.33E-06 13 -1.1569e-06
Strain hardening constant,  (36) 0.00038914 1.40E-02 6 0.00039092

Pre-strain for wrought materials, 0
p

 (0) 0.029650 0.00 - 0.029319

Strain hardening exponent,  (0.45) 0.095916 4.32E-02 3 0.11580
Thermal softening coefficient,  (0.001) -0.0016448 1.64E-06 14 -0.0016989
Melt energy, em  (0.0571 Mbar-cm3/g) 0.00030827 1.76E-05 10 0.00032079
Nominal yield stress, Y0  (0.0012 Mbar) 27.454 3.29E-02 5 27.572
Shear modulus (0.477 Mbar) -2.7090e-05 1.29E-05 12 -0.0017957
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FIGURE 1. Comparison of AD- and FD- produced nominal-
yield-stress and initial-velocity sensitivities for a 190 m/s
impact.
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FIGURE 2. Comparison of AD- and FD- produced sound-speed
sensitivities for a 190 m/s impact. The FDs were determined
with two fractional perturbations (10-7 and 10-8).

An important issue when choosing whether to
use a forward or adjoint method to determine
sensitivities is the amount of computer time that
each method requires.  As mentioned above, the
number of parameters versus the number of
responses plays a key role in this decision.  For this

problem we have chosen only one response.  The
run times for the various methods used to obtain
the results in Table 1 are listed in Table 2.

We see that ADIFOR-adjoint uses the least CPU
time.  For a problem like this one with only one
response additional or fewer parameters will not



significantly change the ADIFOR-adjoint run time.
ADIFOR-forward and FD runtimes scale linearly
with the number of parameters. One could
determine the sensitivities for approximately 9
parameters in the adjoint runtime using the
ADIFOR-forward or FD methods.  This becomes
the break-even number for the ADIFOR-adjoint
method.  In other words, for 9 or more problem
parameters the adjoint method will make best use
of computational resources.  Here we used
uniformly spaced checkpoints (every 1 µs for the
60µs calculation). This may not be the optimal
balance of storage versus recalculation (14).  As we
gain experience with these methods, minimization
of computational time will be better understood and
pursued.

TABLE 2. SGI Origin 2000 CPU times for Taylor-test
calculation with 17 parameters.

Single ADIFOR ADIFOR Finite
Forward Adjoint Forward Difference
(CPU sec.) (CPU sec.) (CPU sec.) (CPU sec.)
_______________________________________
1935 21141 38986 37316

SUMMARY AND FUTURE WORK

We have applied the automatic differentiation
tool ADIFOR (version 3.0) to the MESA2D
hydrocode (a Fortran77 code) and have obtained
accurate sensitivities for a Taylor-cylinder impact
problem in both the forward and adjoint modes.
We have determined for problems of this size and
duration that the adjoint method is most efficient
when there are 9 or more problem parameters.  We
will apply this capability to experimental-data
assimilation and result-uncertainty analysis with
this code. We will then extend the capability to
parallel codes written in languages other than
Fortan77.
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